Animals and Trees

A balancing act

Dr Lindsay Whistance

Physiological health Emotional health Natural behaviour

Animal welfare

Lives worth living'

Homeostatic equilibrium

Andrew Barbour

Jim McAdam

A spectrum

H AC

Thermoneutral zone

Where metabolic rates are low/minimal

Cold stress

(Ralph, 1981)	LAMB MORTALITY (%)		
	SHELTER	NO SHELTER	
Single births	8.9	17.5	
Multiple births	38.8	51.3	

For every 1°C below an animal's LCT: Beef: a 2% increase in energy requirements is needed Newly shorn sheep: a 1.7% increase is needed.

Respiratory rate

Stress hormones

Feed intake

Rumen microbes

Metabolic disorders Inflammation

Oestrus expression Embryo growth Foetal development Calf size Milk/colostrum

amount/quality

Variation in the diet of domestic stock

http://www.forestry.gov.uk; Dicko and Sikena, 1992

Influences on mineral content: species, time of year and geographical location

	tree	site	time	treexsite	treextime	sitextime
Ca	***	**	* * *	***	**	*
Р	ns	*	***	***	ns	*
Mg	***	ns	ns	***	*	*
Na	***	***	***	***	ns	**
К	***	***	ns	***	ns	**
Cu	***	***	* * *	***	ns	tr.
S	***	**	ns	*	***	***
Fe	***	***	ns	***	***	***
Мо	***	ns	ns	**	*	ns
Mn	*	*	***	***	*	ns
Pb	***	tr.	***	***	ns	*
Cd	***	***	ns	***	ns	ns
As	**	**	ns	***	**	**
В	*	ns	***	***	**	**
AI	ns	ns	**	*	ns	ns
Ni	**	ns	*	*	ns	tr.
Se	ns	**	ns	ns	ns	ns
Со	***	*	*	*	tr.	ns
Zn	***	***	ns	***	ns	ns

For minerals:

Species is the strongest single influence followed by location.

It appears that time of harvest is less important than for protein content.

Kendall NR, Smith J, Whistance LK, Stergiadis S, Stoate C, Chesshire H, Smith, AR (2021) Trace element composition of tree fodder and potential nutritional use for livestock. *Livestock Science* 250:104560 DOI: https://doi.org/10.1016/j.livsci.2021.104560

Minerals retained in stored tree fodder

Harvested July, Analysed fresh, Stored until following March. Analysed stored. Fed to housed cattle

	State	Fresh	Stored	Fresh	Stored	Fresh	Stored	Stored	Stored
Sample	Unit	Ash	Ash	Elm	Elm	Goat willow	Goat willow	Alder	Osier willow
Nitrogen DUMAS	% w/w	1.78	2.21	2.23	2.31	2.66	2.16	3.16	2.23
Phosphorus	mg/kg	3144	3661	2292	2362	4243	5501	2240	2971
Potassium	mg/kg	14065	20015	14722	20884	13942	18977	9051	10364
Calcium	mg/kg	12776	15987	10998	16758	10204	14522	13365	18769
Magnesium	mg/kg	2235	2681	1889	2798	1930	2682	2481	1764
Sulphur	mg/kg	1840	2348	1313	1655	2056	2571	1890	4124
Manganese	mg/kg	25.5	31.6	37.2	37.9	35.5	46.3	129	284
Copper	mg/kg	7.4	9.6	6.5	9.3	7.6	10.9	11.2	5.5
Zinc	mg/kg	18.5	22.9	31.7	40.1	118	144	53.2	245
Iron	mg/kg	91.2	116	138	258	75.7	142	91.6	73.1
Boron	mg/kg	15.7	17.5	19.3	26.0	12.7	18.2	28.9	36.7
		Fraxinus	excelsior Ulmus minor		Salix caprea		Alnus	Salix	
						•		glutinosa	viminalis

Journal of Applied Ecology, 1992

REAL PROFILE AND A CONTRACT OF THE SECOND

Abnormal behaviour becomes normal in an appormal environment

	Scientific name	Common Name	Salicylic Acid (mg/g FW)
Salicin	S. daphnoides	European violet willow	3.21
content in willow	S. caprea	Goat Willow	1.95
	S. fragilis	Crack willow	1.65
	S. viminalis	Osier willow	0.21
	S. alba	White Willow	0.2

'A high quality of life for farm animals requires provision rather than deprivation'

(Sommerville and Jones, 2013)

Thanks for listening