

Legumes leys: improving fertility building, forage quality and biodiversity

Hannah Jones, Robert Brown, Rachel Roberts

Agronomic

First year N fixation Silage/ Hay Early grazing 3 year longevity Deep rooting Weeds suppressive Low bloat risk Spring or autumn sowing

Environmental

Drought tolerance Flood tolerance High biomass Frost tolerant Low/high pH tolerant High organic matter Enhance biodiversity Reduces N leaching from residues

Each legume species has its strengths and its weaknesses

August 2013

Project Report No. 513

Using legume-based mixtures to enhance the nitrogen use efficiency and economic viability of cropping systems

by

Thomas F. Döring¹, John A. Baddeley², Robert Brown³, Rosemary Collins⁴, Oliver Crowley¹, Steve Cuttle^{4a}, Sally A. Howlett¹, Hannah E. Jones³, Heather McCalman⁴, Mark Measures⁵, Bruce D. Pearce¹, Helen Pearce¹, Stephen Roderick⁶, Ron Stobart⁷, Jonathan Storkey⁸, Emma L. Tilston^{2a}, Kairsty Topp^{2a}, Christine Watson², Louisa R. Winkler¹, and Martin S. Wolfe¹

The All Species Mixture – 'ASM' Trifolium pratense Trifolium repens Trifolium hybridum Medicago sativa Medicago lupulina Lathyrus pratensis Lotus pedunculatus Lotus corniculatus Onobrychis viciifolia Trifolium incarnatum Lolium perenne Lolium multiflorum Phleum pratense Festuca pratensis

Red clover White clover Alsike clover Lucerne Black medic Meadow pea Large birdsfoot trefoil Birdsfoot trefoil Sainfoin Crimson clover Perennial ryegrass Italian ryegrass Timothy Meadow fescue

LegumeLINK project results – **Engineering an ecosystem to deliver multiple services.** Storkey et al, 2014 (in press)

The success of a legume is pre-determined by root nodulation

	Control		
Legume	Number of plants		
	assessed over	Plants	Mean no. nodules
	10 farm sites	nodulated	±1 SE
Black medic	84	22 (26%)	2.9 ±0.41
Lucerne	85	22 (26%)	2.2 ±0.33
Red clover	87	84 (97%)	5.6 ±0.36
White clover	85	85 (100%)	4.8 ±0.31

Rhizobia species specificity to legumes within the ASM

Root system of lucerne, showing
healthy pink root nodules, and
numerous small ineffective
nodule (white arrows)

Host legume	Rhizobia species	Bacterial strain code
White clover	Rhizobium leguminosarum bv. trifolii	RCR221*
Red clover		
Alsike clover		
Crimson clover		RCR226
Black medic	Sinorhizobium meliloti	RCR2011*
Lucerne		
Sainfoin	Rhizobium gallicum bv. gallicum	RCR3007
Birdsfoot trefoil	Mesorhizobium loti	RCR3002
Large birdsfoot trefoil		RCR3209
Meadow pea	Rhizobium leguminosarum bv. viciae	RCR1001*

Good, mediocre and bad lucerne rhizobia

E. meliloti

E. medicae

S.fredii

	ρН	E. meliloti	E. medicae	S. fredii	No. nodules black medic	No. nodules lucerne
	4.9	-	-	-	0	0
	5.3	-	-	-	0	0
1	5.5	4	-	-	2	7
	5.9	-	-	14	34	40
1	6.0	-	2	8	16	3
	6.4	-	-	_	0	I
	6.7	8	21	-	56	59
1	7.0	7	11	-	47	60
	7.1	2	10	-	30	16
1	7.3	4	2	-	27	7

9 lucerne plants selected per site

Lucerne (and black medic) can nodulate with three different rhizobium species found in farm soils

E. meliloti is the best, *E. medicae* is effective, but *S. freddii* is highly detrimental

E.meliloti is effective at low pH, but was not recovered from soils below 6.7, even in other soils inoculated 3 years previously.

pH affects the long term survival of rhizobia in the soil.

Lucerne + *E. meliloti* are acid tolerant, but not independently so

In a diverse legume mixture which includes a significant proportion of black medic, lucerne and white clover....

N79 VRX

The All		
Species Mixture – 'ASM'		
Trifolium pratense	Red clover	
Trifolium repens	White clover	
Trifolium hybridum	Alsike clover	
Medicago sativa	Lucerne	
Medicago lupulina	Black medic	
Lathyrus pratensis	Meadow pea	
Lotus pedunculatus	Large birdsfoot trefoil	
Lotus corniculatus	Birdsfoot trefoil	
Onobrychis viciifolia	Sainfoin	
Trifolium incarnatum	Crimson clover	
Lolium perenne	Perennial ryegrass	
Lolium multiflorum	Italian ryegrass	
Phleum pratense	Timothy	

The 'Control'

Trifolium pratense	Red clover
Dactylis glomerata	Cocksfoot
Trifolium repens	White clover
Dactylis glomerata	Chicory

Three years of wheat data

Average 32% increase in crude protein in Soissons, after the diverse mixture compared to the control

No difference in yield between two leys

At mid-stem extension, the control *probably* provided more nitrogen compared to the diverse mixture

But

At harvest N is significantly higher after the diverse mixture compared to the control

So

The diverse mixture probably releases more late season N compared to the control

Two years of forage data (but three data sets from leys of different ages)

32% increase in crude protein in forage in ASM

The leys behaved as expected: leafy material (early cuts) had higher protein

No difference in metabolisable energy between leys, but early cutting better than late cuts

And finally...

In summary

LegumeLINK consortium and participating farmers

Richard Casebow & Caroline Hadley for their technical expertise

Rachel Roberts

Lawes and RETF funded PhD

Rob Brown

BBSRC CASE studentship with ORC-Elm Farm