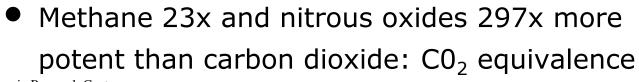
# Organic farming, greenhouse gas emissions and energy use

Dr. Nic Lampkin

Executive Director, Organic Research Centre Visiting Professor, University of Reading




© The Organic Research Centre

## Agricultural components of climate change

Agriculture contributes to greenhouse gas increases through:

- Carbon dioxide releases linked to fossil energy use, decomposition of organic matter and deforestation
- Methane releases from paddy rice cultivation, enteric fermentation in ruminant livestock and manures
- Nitrous oxide releases from fertiliser manufacture/use and manure applications



## Significance of agricultural emissions

- These agricultural components account for more than 50% of methane, 80% of nitrous oxide and 95% of CO<sub>2</sub> emissions linked to land use
- Livestock related emissions may account for 18% of total human-derived emissions (10% of CO<sub>2</sub>, 35% of CH<sub>4</sub>, 60% of NO<sub>x</sub>), but big differences between species and systems
- Whole food systems, including inputs, distribution, processing, retailing and domestic, account for >35% of total emissions



## Assessing the evidence on organic farming

- Needs careful assessment of evidence, but real world data is highly variable
- Organic farms are not homogeneous; can be significant differences in:
  - Land use, from hill farms to market gardens
  - Soil types and locations/climatic conditions
  - Production methods/intensity
  - Reliance on fossil/renewable energy
  - Skills, training and priorities of producers



Carbon footprint calculators and organic

Organic Research Centre V. comparisons too simplistic

|                                            | Conv.<br>average | Conv.<br>top 25% | Org.<br>average | Org.<br>top 25% |
|--------------------------------------------|------------------|------------------|-----------------|-----------------|
| g CO <sub>2</sub> equiv.<br>per litre milk | 907              | 745              | 828             | 705             |
| % from $CO_2$                              | 23               | 25               | 21              | 22              |
| % from CH <sub>4</sub>                     | 52               | 55               | 69              | 68              |
| % from N <sub>2</sub> O                    | 25               | 20               | 10              | 10              |



Source: Allen et al., 2007

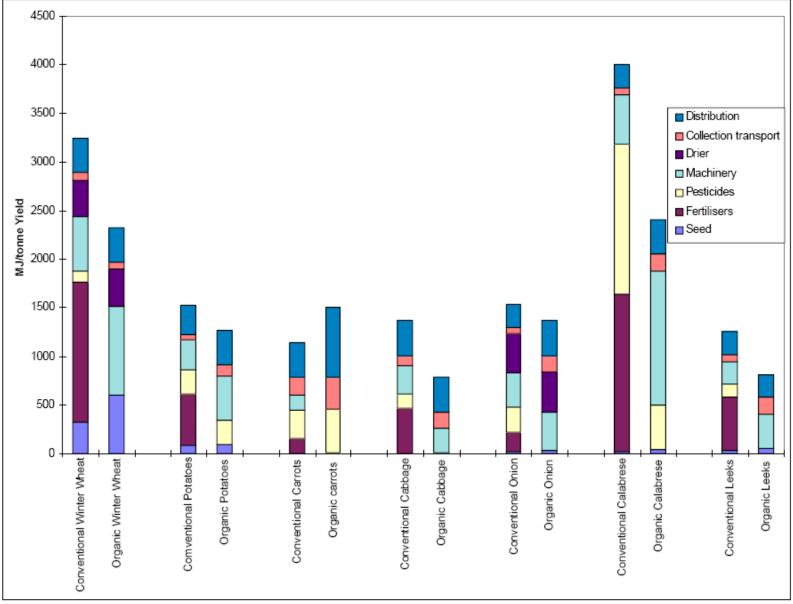
## Fossil energy use

- Carbon dioxide emissions (other than those arising from organic matter breakdown) are closely linked to fossil energy use
- In general, organic farming uses less fossil energy than intensive, conventional farming systems
  - per hectare and per unit food produced
  - but some crops, e.g. potatoes, more problematic

#### Some examples of organic energy use as % of conventional

| Study                     | Country  | Product   | per ha | per kg |
|---------------------------|----------|-----------|--------|--------|
| Edwards-Jones &           | Scotland | Potatoes  | 29     | 24     |
| Howells (1997)            |          | Wheat     | 51     | 70     |
|                           |          | Barley    | 48     | 65     |
| Refsgaard et al.          | Denmark  | Cereals   |        | 87     |
| (1998)                    |          | Forage    |        | 32     |
|                           |          | Milk      |        | 84     |
| Cormack &                 | England  | Wheat     | 40     | 70     |
| Metcalfe (2000)           |          | Potatoes  | 55     | 86     |
|                           |          | Carrots   | 41     | 127    |
|                           |          | Cabbage   | 53     | 65     |
|                           |          | Onion     | 69     | 93     |
|                           |          | Calabrese | 30     | 60     |
|                           |          | Leeks     | 40     | -      |
| Williams et al.           | England  | Wheat     |        | 71     |
| (2006)                    |          | Potatoes  |        | 102    |
|                           |          | Sheep     |        | 80     |
|                           |          | Milk      |        | 62     |
| e Crganic Research Centre |          | Poultry   |        | 132    |



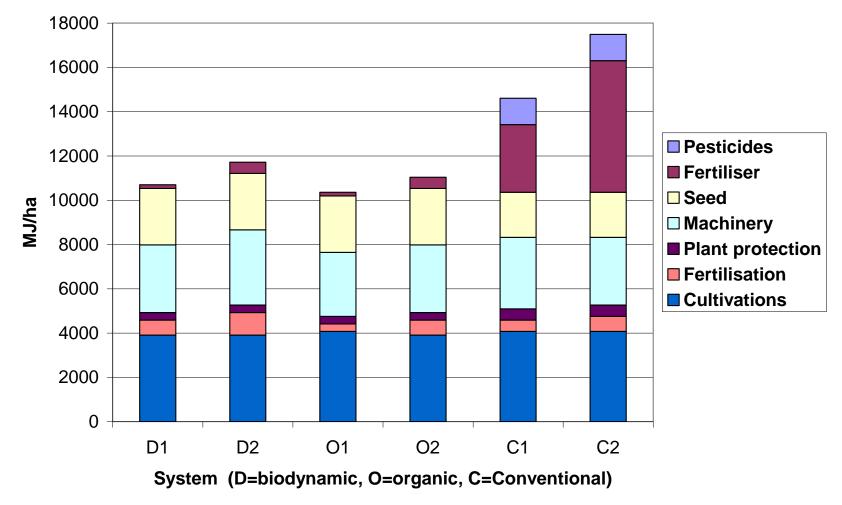

## **Energy output/input ratios** (tropical subsistence = 10-40, UK agriculture overall < 0.5)

| Source             | Product                                       | Conv.                           | Org.                  |
|--------------------|-----------------------------------------------|---------------------------------|-----------------------|
| Leach<br>(1976)    | Wheat<br>Maize<br>Potatoes<br>Milk<br>Poultry | 3.5<br>2.8<br>2.6<br>0.4<br>0.1 | -<br>-<br>-<br>-<br>- |
| Pimentel<br>(2006) | Wheat<br>Maize<br>Soya                        | 2.1<br>5.1<br>3.2               | -<br>7.7<br>3.8       |

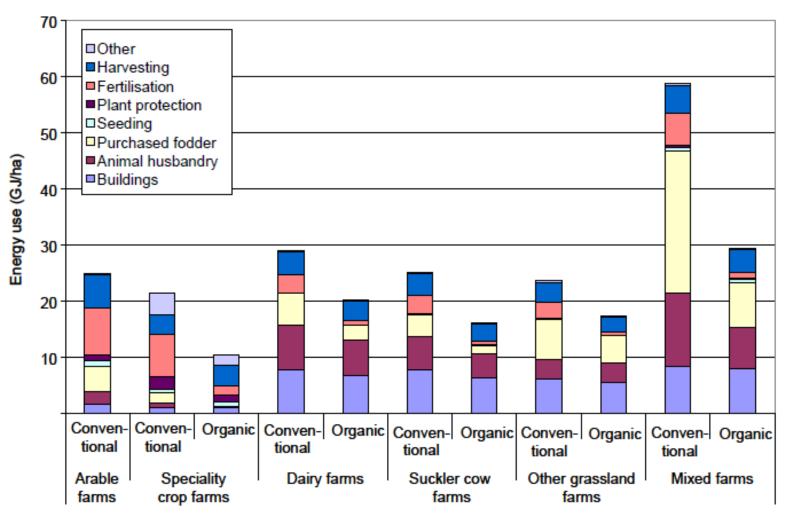


The Organic Research Centre

#### **Energy use per tonne for UK crops**




Source: Cormack & Metcalfe, 2000


Research

**ELM FARM** 

### Role of fertilisers and pesticides



Source: Alfoeldi et al., 1995



Source: Schader, 2010, unpublished PhD thesis

ORGANIC RESEARCH CENTRE ELM FARM

## Not just a production issue

- Need to consider whole food system
- Localisation of food production not sufficient (or even most important issue?)
- Should diet change to reduce meat content?
- Does urbanisation of population require radical change in production patterns?

